में अनुक्रमित
  • जे गेट खोलो
  • जेनेमिक्स जर्नलसीक
  • शैक्षणिक कुंजी
  • जर्नल टीओसी
  • अनुसंधान बाइबिल
  • चीन राष्ट्रीय ज्ञान अवसंरचना (सीएनकेआई)
  • Scimago
  • उलरिच की आवधिक निर्देशिका
  • इलेक्ट्रॉनिक जर्नल्स लाइब्रेरी
  • RefSeek
  • हमदर्द विश्वविद्यालय
  • ईबीएससीओ एज़
  • ओसीएलसी- वर्ल्डकैट
  • एसडब्ल्यूबी ऑनलाइन कैटलॉग
  • जीव विज्ञान की वर्चुअल लाइब्रेरी (विफैबियो)
  • पबलोन्स
  • मियार
  • वैज्ञानिक अनुक्रमण सेवाएँ (एसआईएस)
  • यूरो पब
  • गूगल ज्ञानी
इस पृष्ठ को साझा करें
जर्नल फ़्लायर
Flyer image

अमूर्त

Emergence of Data-Driven Microfluidics.

Takasaki Yumi

Microfluidic devices currently rely on researchers to select the initial operating conditions empirically, then monitor and modify parameters throughout studies to achieve and maintain stable conditions that produce repeatable data. Multiple factors can cause inconsistent experimental conditions in polydimethylsiloxane-based microfluidic devices, including fabrication flaws, clogging, bubble formation, chemical impurities, or long-term effects like temperature and pressure fluctuations, surface fouling, and substrate deformation. Because of the adsorption of hydrophobic small molecules, these differences can alter chemical synthesis by changing solution concentrations or biological analyses. In this section, we discuss new research on the application of machine intelligence in microfluidic chips in conjunction with optical microscopy. This method has been used to forecast droplet size and stability, as well as to assess droplet chemical composition and fluid characteristics, as well as to monitor and correct flow rates and droplet sizes to avoid undesirable consequences such as bubble formation. Multiple inputs are converted into low-dimensional feature representations (codes) using autoencoders, which can then be processed and decoded to reconstruct the inputs.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।