में अनुक्रमित
  • जे गेट खोलो
  • जेनेमिक्स जर्नलसीक
  • स्मिथर्स राप्रा
  • RefSeek
  • रिसर्च जर्नल इंडेक्सिंग की निर्देशिका (डीआरजेआई)
  • हमदर्द विश्वविद्यालय
  • ईबीएससीओ एज़
  • ओसीएलसी- वर्ल्डकैट
  • विद्वान्
  • पबलोन्स
  • चिकित्सा शिक्षा और अनुसंधान के लिए जिनेवा फाउंडेशन
  • गूगल ज्ञानी
इस पृष्ठ को साझा करें
जर्नल फ़्लायर
Flyer image

अमूर्त

Control Volume Approach for Modeling the Interphase Mass Transfer in a Packed Column Distillation

Goro Nishimura, Kunio Kataoka, Hideo Noda and Naoto Ohmura

A simplified mass transfer model for a ternary ideal solution was constructed by a control volume method proposed for a packed distillation column. The concept of modeling was in how to bridge between the distillation experiment of a real column and the computer-aided process simulation of an ideal column. The control volume approach using local values of HETPs determined by experiment was contrived to determine step-by-step local values of the vapor-phase and liquid-phase mass transfer coefficients. A commercial-scaled 5.5 m high packed column equipped with three beds of wire-mesh corrugated-structured packing was used as a test column. The experiment was conducted at normal pressure under the total-reflux condition for a ternary system of methanol, ethanol, and iso-propanol. The process simulation analysis for an ideal equilibrium-staged column was made to compare with the distillation experiment made by a real column. The volumetric film coefficients of mass transfer in the vapor phase and liquid phase, respectively, were evaluated step-by-step by the control volume method taking into account the experimentally obtained HETPs. Local variation of the experimental mass transfer correlations were generalized in a dimensionless form separating into the effect of local behavior and the Reynolds number dependency.