में अनुक्रमित
  • जे गेट खोलो
  • जेनेमिक्स जर्नलसीक
  • जर्नल टीओसी
  • चीन राष्ट्रीय ज्ञान अवसंरचना (सीएनकेआई)
  • इलेक्ट्रॉनिक जर्नल्स लाइब्रेरी
  • RefSeek
  • हमदर्द विश्वविद्यालय
  • ईबीएससीओ एज़
  • ओसीएलसी- वर्ल्डकैट
  • एसडब्ल्यूबी ऑनलाइन कैटलॉग
  • जीव विज्ञान की वर्चुअल लाइब्रेरी (विफैबियो)
  • पबलोन्स
  • मियार
  • यूरो पब
  • गूगल ज्ञानी
इस पृष्ठ को साझा करें
जर्नल फ़्लायर
Flyer image

अमूर्त

Conceptual Reference Evapotranspiration Models for Different Time Steps

Laaboudi A, Mouhouche B and Draoui B

The evapotranspiration is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. The use of Artificial Neural Networks (ANNs) in estimation of reference evapotranspiration has received enormous interest in the present decade. This paper describes the results obtained using neural network techniques to improve the accuracy of reference evapotranspiration estimation in different situations. Because the Neural networks are proved to be parsimonious universal approximators of nonlinear function, we have exploited this property to build various models in situation of lack of meteorological parameters and in different time steps. The FAO-56 Penman–Monteith equation (PM) was used to compute the reference evapotranspiration values. The study showed that the neural network technique performed the best models even when it is feared the risk of co linearity and provided the best results by choosing appropriate architecture. They were able to reduce both Root Mean Squared Error and Mean Absolute Relative Error values and at the same time maximize the Nash-Sutcliffe efficiency and coefficient determination values.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।